Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/22607
Title: Regular and slow-fast codimension 4 saddle-node bifurcations
Authors: HUZAK, Renato 
Issue Date: 2017
Source: JOURNAL OF DIFFERENTIAL EQUATIONS, 262 (2), p. 1119-1154
Abstract: Using geometric singular perturbation theory, including the family blow-up as one of the main techniques, we prove that the cyclicity, i.e. maximum number of limit cycles, in both regular and slow-fast unfoldings of nilpotent saddle-node singularity of codimension 4 is 2. The blow-up technique enables us to use the well known results for slow-fast codimension 1 and 2 Hopf bifurcations, slow-fast Bogdanov–Takens bifurcations and slow-fast codimension 3 saddle and elliptic bifurcations.
Notes: Huzak, R (reprint author), Hasselt Univ, Campus Diepenbeek,Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium. renato.huzak@uhasselt.be
Keywords: blow-up; limit cycles; singular perturbations; slow-fast systems
Document URI: http://hdl.handle.net/1942/22607
ISSN: 0022-0396
e-ISSN: 1090-2732
DOI: 10.1016/j.jde.2016.10.008
ISI #: 000389682300012
Rights: © 2016 Elsevier Inc. All rights reserved
Category: A1
Type: Journal Contribution
Validations: ecoom 2018
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
SlowFastCodimensionFour.pdfPeer-reviewed author version1.63 MBAdobe PDFView/Open
1-s2.0-S0022039616303333-main.pdf
  Restricted Access
Published version1.39 MBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.