Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/31920
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEGGHE, Leo-
dc.contributor.authorROUSSEAU, Ronald-
dc.date.accessioned2020-09-17T06:56:29Z-
dc.date.available2020-09-17T06:56:29Z-
dc.date.issued2020-
dc.date.submitted2020-09-01T13:26:42Z-
dc.identifier.citationMathematics, 8 (5) (Art N° 811)-
dc.identifier.urihttp://hdl.handle.net/1942/31920-
dc.description.abstractIn this contribution, we consider the problem of finding the minimal Euclidean distance between a given converging decreasing one-dimensional array X in (R+)(infinity) and arrays of the form A(a) = (a,a,...,a, 0,0, ... a times), with a being a natural number. We find a complete, if not always unique, solution. Our contribution illustrates how a formalism derived in the context of research evaluation and informetrics can be used to solve a purely mathematical problem.-
dc.language.isoen-
dc.publisherMDPI-
dc.rights2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).-
dc.subject.othergeneralized h-index-
dc.subject.othergeneralized g-index-
dc.subject.otherminimization problem-
dc.titleMinimal Impact One-Dimensional Arrays-
dc.typeJournal Contribution-
dc.identifier.issue5-
dc.identifier.volume8-
local.format.pages11-
local.bibliographicCitation.jcatA1-
dc.description.notesRousseau, R (corresponding author), Univ Antwerp, Fac Social Sci, B-2020 Antwerp, Belgium.; Rousseau, R (corresponding author), Katholieke Univ Leuven, Dept MSI, B-3000 Leuven, Belgium.; Rousseau, R (corresponding author), Ctr R&D Monitoring ECOOM, B-3000 Leuven, Belgium.-
dc.description.notesleo.egghe@uhasselt.be; ronald.rousseau@uantwerpen.be-
dc.description.otherRousseau, R (corresponding author), Univ Antwerp, Fac Social Sci, B-2020 Antwerp, Belgium; Katholieke Univ Leuven, Dept MSI, B-3000 Leuven, Belgium; Ctr R&D Monitoring ECOOM, B-3000 Leuven, Belgium. leo.egghe@uhasselt.be; ronald.rousseau@uantwerpen.be-
local.publisher.placeST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr811-
dc.identifier.doi10.3390/math8050811-
dc.identifier.isiWOS:000542738100188-
dc.identifier.eissn2227-7390-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.description.affiliation[Egghe, Leo] Univ Hasselt, B-3500 Hasselt, Belgium.-
local.description.affiliation[Rousseau, Ronald] Univ Antwerp, Fac Social Sci, B-2020 Antwerp, Belgium.-
local.description.affiliation[Rousseau, Ronald] Katholieke Univ Leuven, Dept MSI, B-3000 Leuven, Belgium.-
local.description.affiliation[Rousseau, Ronald] Ctr R&D Monitoring ECOOM, B-3000 Leuven, Belgium.-
local.uhasselt.internationalno-
item.contributorEGGHE, Leo-
item.contributorROUSSEAU, Ronald-
item.fullcitationEGGHE, Leo & ROUSSEAU, Ronald (2020) Minimal Impact One-Dimensional Arrays. In: Mathematics, 8 (5) (Art N° 811).-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.validationecoom 2021-
crisitem.journal.eissn2227-7390-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
mathematics-08-00811-v2.pdfPublished version904.82 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.