Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/31920
Title: Minimal Impact One-Dimensional Arrays
Authors: EGGHE, Leo 
ROUSSEAU, Ronald 
Issue Date: 2020
Publisher: MDPI
Source: Mathematics, 8 (5) (Art N° 811)
Abstract: In this contribution, we consider the problem of finding the minimal Euclidean distance between a given converging decreasing one-dimensional array X in (R+)(infinity) and arrays of the form A(a) = (a,a,...,a, 0,0, ... a times), with a being a natural number. We find a complete, if not always unique, solution. Our contribution illustrates how a formalism derived in the context of research evaluation and informetrics can be used to solve a purely mathematical problem.
Notes: Rousseau, R (corresponding author), Univ Antwerp, Fac Social Sci, B-2020 Antwerp, Belgium.; Rousseau, R (corresponding author), Katholieke Univ Leuven, Dept MSI, B-3000 Leuven, Belgium.; Rousseau, R (corresponding author), Ctr R&D Monitoring ECOOM, B-3000 Leuven, Belgium.
leo.egghe@uhasselt.be; ronald.rousseau@uantwerpen.be
Other: Rousseau, R (corresponding author), Univ Antwerp, Fac Social Sci, B-2020 Antwerp, Belgium; Katholieke Univ Leuven, Dept MSI, B-3000 Leuven, Belgium; Ctr R&D Monitoring ECOOM, B-3000 Leuven, Belgium. leo.egghe@uhasselt.be; ronald.rousseau@uantwerpen.be
Keywords: generalized h-index;generalized g-index;minimization problem
Document URI: http://hdl.handle.net/1942/31920
e-ISSN: 2227-7390
DOI: 10.3390/math8050811
ISI #: WOS:000542738100188
Rights: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Category: A1
Type: Journal Contribution
Validations: ecoom 2021
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
mathematics-08-00811-v2.pdfPublished version904.82 kBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.