Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/332
Title: | Pseudo-likelihood inference for clustered binary data | Authors: | GEYS, Helena MOLENBERGHS, Geert Ryan, Louise M. |
Issue Date: | 1997 | Source: | Communications in Statistics: Theory and Methods, 26(11). p. 2743-2767 | Abstract: | Molenberghs and Ryan (1996) proposed a likelihood-based model for clustered binary data, based on a multivariate exponential family model (Cox, 1972). The model benefits from the elegance and simplicity of exponential family theory and is flexible in terms of allowing response rates to depend on cluster size. A main problem however, particularly with large clusters is the evaluation of the normalizing constant. In this paper, pseudo-likelihood is explored as an alternative mode of inference. The pseudo-likelihood equations are derived, the model is applied to data from a developmental toxicity study, and an asymptotic and small sample relative efficiency study is performed. | Keywords: | clustered data; developmental toxicity; exponential family; likelihood; normalizing constant | Document URI: | http://hdl.handle.net/1942/332 | ISSN: | 0361-0926 | e-ISSN: | 1532-415X | DOI: | 10.1080/03610929708832075 | ISI #: | A1997YF14300011 | Rights: | Copyright (c) 1997 by Marcel Dekker, Inc. | Type: | Journal Contribution |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
geys1997.pdf Restricted Access | Published version | 999.39 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.