Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/34275
Title: Low-Mach consistency of a class of linearly implicit schemes for the compressible Euler equations
Authors: Kučera, Václav
Lukáčová-Medviďová, Mária
Noelle, Sebastian
SCHUETZ, Jochen 
Editors: Chleboun, J.
Kus, P.
Prikryl, P.
Rozložník, M.
Segeth, K.
Sistek, J.
Issue Date: 2021
Publisher: ACAD SCIENCES CZECH REPUBLIC
Source: J. Chleboun, P. Kůs, P. Přikryl, M. Rozložník, K. Segeth, J. Šístek (Ed.). Programs and Algorithms of Numerical Mathematics. Proceedings of Seminar, Institute of Mathematics CAS, ACAD SCIENCES CZECH REPUBLIC, p. 69 -78
Abstract: In this note, we give an overview of the authors' paper [6] which deals with asymptotic consistency of a class of linearly implicit schemes for the compressible Euler equations. This class is based on a linearization of the nonlinear fluxes at a reference state and includes the scheme of Feistauer and Ku\v{c}era [3] as well as the class of RS-IMEX schemes [8,5,1] as special cases. We prove that the linearization gives an asymptotically consistent solution in the low-Mach limit under the assumption of a discrete Hilbert expansion. The existence of the Hilbert expansion is shown under simplifying assumptions.
Keywords: asymptotic preserving schemes;compressible Euler equations;low-Mach limit;Hilbert expansion
Document URI: http://hdl.handle.net/1942/34275
ISBN: 9788085823714
DOI: 10.21136/panm.2020.07
ISI #: WOS:000672803500007
Category: C1
Type: Proceedings Paper
Validations: ecoom 2022
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
PANM_20-2020-1_10.pdfPublished version359.49 kBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.