Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45303
Title: New examples of non-Fourier-Mukai functors
Authors: RAEDSCHELDERS, Theo 
Rizzardo, A
VAN DEN BERGH, Michel 
Issue Date: 2022
Publisher: 
Source: Compositio Mathematica, 158 (6) , p. 1254 -1267
Abstract: A celebrated result by Orlov states that any fully faithful exact functor between the bounded derived categories of coherent sheaves on smooth projective varieties is of geometric origin, i.e. it is a Fourier-Mukai functor. In this paper we prove that any smooth projective variety of dimension ≥ 3 equipped with a tilting bundle can serve as the source variety of a non-Fourier-Mukai functor between smooth projective schemes.
Keywords: Fourier-Mukai functor;Orlov's theorem
Document URI: http://hdl.handle.net/1942/45303
ISSN: 0010-437X
e-ISSN: 1570-5846
DOI: 10.1112/s0010437x22007540
ISI #: 000839454200001
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
new-examples-of-non-fourier-mukai-functors.pdfPublished version469.12 kBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.