Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45562
Title: MULTICOLLINEARITY: AN OVERVIEW AND INTRODUCTION OF RIDGE PLS-SEM ESTIMATION
Authors: STREUKENS, Sandra 
LEROI-WERELDS, Sara 
Issue Date: 2023
Source: Partial Least Squares Path Modeling, p. 183 -207
Abstract: Multicollinearity, or the existence of excessive correlations among (combinations of) predictor variables, is a commonly encountered phenomenon that affects (PLS-SEM) parameter estimates. This chapter provides an extensive overview of multicollinearity, its consequences, detection, and possible solutions. Critical to this overview is the explicit distinction among three types of multicollinearity: canonical structural multicollinearity, numerical multicollinearity, and common-factor multicollinearity. In addition, ridge PLS-SEM-an approach that combines the principles of ridge regression and PLS-SEM modelling-is introduced as an effective approach to mitigate the effects of canonical structural multicollinearity on estimation results.
Keywords: Multicollinearity;ridge estimation;PLS-SEM;ridge PLS-SEM;VIF
Document URI: http://hdl.handle.net/1942/45562
ISBN: 978-3-031-37771-6
978-3-031-37772-3
DOI: 10.1007/978-3-031-37772-3_7
Category: B2
Type: Book Section
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
Streukens and Leroi-Werelds 2023 Multicollinearity.pdf
  Restricted Access
Peer-reviewed author version562.25 kBAdobe PDFView/Open    Request a copy
Show full item record

SCOPUSTM   
Citations

19
checked on Sep 30, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.