Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45562
Title: MULTICOLLINEARITY: AN OVERVIEW AND INTRODUCTION OF RIDGE PLS-SEM ESTIMATION
Authors: STREUKENS, Sandra 
LEROI-WERELDS, Sara 
Issue Date: 2023
Source: Partial Least Squares Path Modeling, p. 183 -207
Abstract: Multicollinearity, or the existence of excessive correlations among (combinations of) predictor variables, is a commonly encountered phenomenon that affects (PLS-SEM) parameter estimates. This chapter provides an extensive overview of multicollinearity, its consequences, detection, and possible solutions. Critical to this overview is the explicit distinction among three types of multicollinearity: canonical structural multicollinearity, numerical multicollinearity, and common-factor multicollinearity. In addition, ridge PLS-SEM-an approach that combines the principles of ridge regression and PLS-SEM modelling-is introduced as an effective approach to mitigate the effects of canonical structural multicollinearity on estimation results.
Keywords: Multicollinearity;ridge estimation;PLS-SEM;ridge PLS-SEM;VIF
Document URI: http://hdl.handle.net/1942/45562
ISBN: 978-3-031-37771-6
978-3-031-37772-3
DOI: 10.1007/978-3-031-37772-3_7
Category: B2
Type: Book Section
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
Streukens and Leroi-Werelds 2023 Multicollinearity.pdf
  Restricted Access
Peer-reviewed author version562.25 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.