Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/45660
Title: | Flexible methods for uncertainty estimation of digital PCR data | Authors: | Chen, Yao De Spiegelaere, Ward Vynck, Matthijs Trypsteen, Wim Gleerup, David Vandesompele, Jo THAS, Olivier |
Issue Date: | 2025 | Publisher: | CELL PRESS | Source: | iScience, 28 (3) (Art N° 111772) | Abstract: | Digital PCR (dPCR) is an accurate technique for quantifying nucleic acids, but variance estimation remains a challenge due to violations of the assumptions underlying many existing methods. To address this, we propose two generic approaches, NonPVar and BinomVar, for calculating variance in dPCR data. These methods are evaluated using simulated and empirical data, incorporating common sources of variability. Unlike classical methods, our approaches are flexible and applicable to complex functions of partition counts like copy number variation (CNV), fractional abundance, and DNA integrity. An R Shiny app is provided to facilitate method selection and implementation. Our findings demonstrate that these methods improve accuracy and adaptability, offering robust tools for uncertainty estimation in dPCR experiments. | Notes: | Vandesompele, J (corresponding author), Univ Ghent, Dept Appl Math Comp Sci & Stat, Ghent, Belgium.; Vandesompele, J (corresponding author), Univ Ghent, Digital PCR Ctr DIGPCR, Ghent, Belgium.; Vandesompele, J (corresponding author), Univ Ghent, Ctr Med Genet, Dept Biomol Med, OncoRNALab, B-9000 Ghent, Belgium.; Vandesompele, J (corresponding author), Canc Res Inst Ghent CRIG, B-9000 Ghent, Belgium.; Vandesompele, J (corresponding author), Hasselt Univ, Data Sci Inst, I Biostat, Diepenbeek, Belgium.; Vandesompele, J (corresponding author), Univ Wollongong, Natl Inst Appl Stat Res Australia NIASRA, Wollongong, NSW 2522, Australia. olivier.thas@uhasselt.be |
Document URI: | http://hdl.handle.net/1942/45660 | e-ISSN: | 2589-0042 | DOI: | 10.1016/j.isci.2025.111772 | ISI #: | 001436864900001 | Rights: | 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). | Category: | A1 | Type: | Journal Contribution |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Flexible methods for uncertainty estimation of digital PCR data.pdf | Published version | 3.83 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.