Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/25678
Title: Penalized spline estimation in varying coefficient models with censored data
Authors: HENDRICKX, Kim 
JANSSEN, Paul 
VERHASSELT, Anneleen 
Issue Date: 2018
Source: TEST, 27(4), p. 871-895
Abstract: We consider P-spline smoothing in a varying coefficient regression model when the response is subject to random right censoring.We introduce two data transformation approaches to construct a synthetic response vector that is used in a penalized least squares optimization problem. We prove the consistency and asymptotic normality of the P-spline estimators for a diverging number of knots and show by simulation studies and real data examples that the combination of a data transformation for censored observations with P-spline smoothing leads to good estimators of the varying coefficient functions.
Keywords: censoring; nonparametric statistics; P-splines; regularization; varying coefficient model
Document URI: http://hdl.handle.net/1942/25678
ISSN: 1133-0686
e-ISSN: 1863-8260
DOI: 10.1007/s11749-017-0574-y
ISI #: 000450660500010
Rights: © Sociedad de Estadística e Investigación Operativa 2017
Category: A1
Type: Journal Contribution
Validations: ecoom 2019
vabb 2019
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
Hendrickx_etal.pdfPeer-reviewed author version617.94 kBAdobe PDFView/Open
11749_2017_574_MOESM1_ESM.pdfSupplementary material360.99 kBAdobe PDFView/Open
Hendrickx.pdf
  Restricted Access
Published version717.94 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.